

TEST REPORT

DATE: 04-03-2024 Page 1 of 1 TEST NUMBER: 0306219

	CLIENT	Egetaepper a/s	
- 1		1 -9	

TEST METHOD CONDUCTED	ASTM E662 Smoke Density (Flaming) Standard Test Method for Specific
TEST METHOD CONDUCTED	Optical Density of Smoke Generated by Solid Materials

	DESCRIPTION OF TEST SAMPLE
IDENTIFICATION	Norway wt
CONSTRUCTION	Loop Pile
BACKING	Woven Synthetic

GENERAL PRINCIPLE

This procedure is designed to measure the specific optical density of smoke generated by the test specimen within a closed chamber. Each specimen is exposed to an electrically heated radiant-energy source positioned to provide a constant irradiance level of 2.5 watts/square cm on the specimen surface. Measurements are recorded through a photometric system employing a vertical beam of light and a photo detector positioned to detect the attenuation of light transmittance caused by smoke accumulation within the chamber. The light transmittance measurements are used to calculate specific optical density, a quantitative value which can be factored to estimate the smoke potential of materials. Two burning conditions can be simulated by the test apparatus. The radiant heating in the absence of ignition is referred to as the Non-Flaming Mode. A flaming combustion in the presence of supporting radiation constitutes the Flaming Mode.

	COI	NDITIONS	
PREDRYING OF TEST SAMPLE CONDITIONING OF TEST SAMPLE TESTING CONDITION	24 Hours at 140° 24 Hours at 70° F As Received	F and 50% Relative Humidity	
FURNACE VOLTAGE CHAMBER TEMPERATURE TEST MODE	118 V 95° F Flaming	IRRADIANCE CHAMBER PRESSURE	2.5 watts/sq cm 3" H ₂ O

AVERAGE MAXIMUM DENSITY CORRECT	ED (Dmc)	FLAMING	163
AVERAGE SPECIFIC OPTICAL DENSITY AT 4.0 MINUTES			155
AND THE PARTY OF T	Specimen 1	Specimen 2	Specimen 3
Maximum Density (Dm)	184.0	166.0	189.0
Time to Dm (minutes)	8.0	6.5	7.5
Clear Beam (Dc)	18.0	15.0	16.0
Corr. Max Density (Dmc)	166.0	151.0	173.0
Density at 1.5 minutes	25.0	26.0	30.0
Density at 4.0 minutes	156.0	149.0	159.0
Time to 90% Dm (minutes)	4.5	2.5	3.5
Specimen Weight (grams)	13.0	12.2	12.8

^{*}NOTE: This material meets the requirements of NFPA Life Safety code for ASTM E662 of not to exceed 450 DMC.

APPROVED BY:

NV(A)

714 Glenwood Place

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approved by MST or any agency of the United States Government for the product tested. This report is provided for the exclusive use of the client to whom it is addressed. It may be used in its entirety to gain product acceptance from duly constituted authorities. This report is only to those samples tested and is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, LLC, shall not be used under any circumstance in advertising to the general public.

Dalton, GA 30721

PJLA Testing Accreditation #93341

706-226-3283 Fax: 708-226-6787 protest@optilink.us

TEST REPORT

DATE: 04-03-2024	Page 1 of 1	TEST NUMBER: 0306219
CLIENT	Egetaepper a/s	

TEST METHOD CONDUCTED	ASTM E662 Smoke Density (Non-Flaming) Standard Test Method for
TEST METHOD CONDUCTED	Specific Optical Density of Smoke Generated by Solid Materials

	DESCRIPTION OF TEST SAMPLE	
IDENTIFICATION	Norway wt	
CONSTRUCTION	Loop Pile	
BACKING	Woven Synthetic	

GENERAL PRINCIPLE

This procedure is designed to measure the specific optical density of smoke generated by the test specimen within a closed chamber. Each specimen is exposed to an electrically heated radiant-energy source positioned to provide a constant irradiance level of 2.5 watts/square cm on the specimen surface. Measurements are recorded through a photometric system employing a vertical beam of light and a photo detector positioned to detect the attenuation of light transmittance caused by smoke accumulation within the chamber. The light transmittance measurements are used to calculate specific optical density, a quantitative value which can be factored to estimate the smoke potential of materials. Two burning conditions can be simulated by the test apparatus. The radiant heating in the absence of ignition is referred to as the Non-Flaming Mode. A flaming combustion in the presence of supporting radiation constitutes the Flaming Mode.

	COND	ITIONS	
PREDRYING OF TEST SAMPLE	24 Hours at 140° F		
CONDITIONING OF TEST SAMPLE 24 Hours at 70° F and 50% Relative Humidity			
TESTING CONDITION As Received		V	
FURNACE VOLTAGE	118 V	IRRADIANCE	2.5 watts/sq cm
CHAMBER TEMPERATURE	95° F	CHAMBER PRESSURE	3'' H₂O
TEST MODE	Non-Flaming		

AVERAGE MAXIMUM DENSITY CORRECTED (Dmc) AVERAGE SPECIFIC OPTICAL DENSITY AT 4.0 MINUTES NON-FLAMING			251
			129
	Specimen 1	Specimen 2	Specimen 3
Maximum Density (Dm)	300.0	181.0	284.0
Time to Dm (minutes)	13.0	16.0	15.0
Clear Beam (Dc)	6.0	2.0	4.0
Corr. Max Density (Dmc)	294.0	179.0	280.0
Density at 1.5 minutes	24.0	15.0	21.0
Density at 4.0 minutes	144.0	113.0	131.0
Time to 90% Dm (minutes)	7.0	10.0	9.0
Specimen Weight (grams)	12.4	12.5	13.0

^{*}NOTE: This material meets the requirements of NFPA Life Safety code for ASTM E662 of not to exceed 450 DMC.

APPROVED BY:

NVIAP IN CODE 100277 0

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorument, certification, or approval by NIST or any agency of the United States Government for the product tested. This report is provided for the exclusive use of the client to whom it is addressed. It may be used in its entirety to gain product acceptance from duly constituted authorities. This report applies only to those samples tested and is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, LEC, shall not be used under any circumstance in advertising to the general public.

706-226-3283 Fax: 706-226-6787 protest@optilink.us