

Professional Testing Laboratory Inc.

TEST REPORT

DATE: 04-14-2023	Page 1 of 1	TEST NUMBER: 0296197

CLIENT Egetaepper a/s	CLIENT
-----------------------	--------

	ASTM E662 Smoke Density (Non-Flaming) Standard Test Method for
TEST METHOD CONDUCTED	Specific Optical Density of Smoke Generated by Solid Materials also
	referenced as NFPA 258

	DESCRIPTION OF TEST SAMPLE	
IDENTIFICATION	Colortec Wool 1100 LF	23
CONSTRUCTION	Cut Pile	
BACKING	Attached Cushion	

GENERAL PRINCIPLE

This procedure is designed to measure the specific optical density of smoke generated by the test specimen within a closed chamber. Each specimen is exposed to an electrically heated radiant-energy source positioned to provide a constant irradiance level of 2.5 watts/square cm on the specimen surface. Measurements are recorded through a photometric system employing a vertical beam of light and a photo detector positioned to detect the attenuation of light transmittance caused by smoke accumulation within the chamber. The light transmittance measurements are used to calculate specific optical density, a quantitative value which can be factored to estimate the smoke potential of materials. Two burning conditions can be simulated by the test apparatus. The radiant heating in the absence of ignition is referred to as the Non-Flaming Mode. A flaming combustion in the presence of supporting radiation constitutes the Flaming Mode.

CONDITIONS			
PREDRYING OF TEST SAMPLE CONDITIONING OF TEST SAMPLE	24 Hours at 140° F 24 Hours at 70° F and	d 50% Relative Humidity	
TESTING CONDITION	As Received		
FURNACE VOLTAGE CHAMBER TEMPERATURE	118 V 95° F	IRRADIANCE CHAMBER PRESSURE	2.5 watts/sq cm 3" H ₂ O
TEST MODE	Non-Flaming		51

AVERAGE MAXIMUM DENSITY CORRECTE	248		
AVERAGE SPECIFIC OPTICAL DENSITY AT 4.0 MINUTES			53
	Specimen 1	Specimen 2	Specimen 3
Maximum Density (Dm)	263.0	246.0	271.0
Time to Dm (minutes)	20.0	20.0	20.0
Clear Beam (Dc)	11.0	10.0	16.0
Corr. Max Density (Dmc)	252.0	236.0	255.0
Density at 1.5 minutes	31.0	25.0	33.0
Density at 4.0 minutes	58.0	37.0	64.0
Time to 90% Dm (minutes)	17.5	17.0	17.5
Specimen Weight (grams)	12.8	12.7	12.7

APPROVED BY:

QAlvin

Dary asbury

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any egency of the United States Government for the producttested. This report is provided for the exclusive use of the client to whom it is addressed. It may be used in its entirety to gain product acceptance from duly constituted euthorities. This report applies only to those samples testedand is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc. shall not be used under any circumstance in advertising to the general public.

714 Glenwood Place Dalton, GA 30721 708-226-3283 Fax: 706-226-6787 protest@optilink.us

TEST REPORT

DATE: 04-14-2023 Page 1 of 1 TEST NUMBER: 0296197

CLIENT	Egetaepper a/s

	ASTM E662 Smoke Density (Flaming) Standard Test Method for Specific
TEST METHOD CONDUCTED	Optical Density of Smoke Generated by Solid Materials also referenced
	as NFPA 258

	DESCRIPTION OF TEST SAMPLE	- N
IDENTIFICATION	Colortec Wool 1100 LF	
CONSTRUCTION	Cut Pile	
BACKING	Attached Cushion	

GENERAL PRINCIPLE

This procedure is designed to measure the specific optical density of smoke generated by the test specimen within a closed chamber. Each specimen is exposed to an electrically heated radiant-energy source positioned to provide a constant irradiance level of 2.5 watts/square cm on the specimen surface. Measurements are recorded through a photometric system employing a vertical beam of light and a photo detector positioned to detect the attenuation of light transmittance caused by smoke accumulation within the chamber. The light transmittance measurements are used to calculate specific optical density, a quantitative value which can be factored to estimate the smoke potential of materials. Two burning conditions can be simulated by the test apparatus. The radiant heating in the absence of ignition is referred to as the Non-Flaming Mode. A flaming combustion in the presence of supporting radiation constitutes the Flaming Mode.

	CON	IDITIONS		
PREDRYING OF TEST SAMPLE CONDITIONING OF TEST SAMPLE	24 Hours at 140° F 24 Hours at 70° F and 50% Relative Humidity			
TESTING CONDITION	As Received	As Received		
FURNACE VOLTAGE	118 V	IRRADIANCE	2.5 watts/sq cm	
CHAMBER TEMPERATURE	95° F	CHAMBER PRESSURE	3" H ₂ O	
TEST MODE	Flaming		III.A.	

AVERAGE MAXIMUM DENSITY CORRECT	ED (Dmc)	FLAMING	309
AVERAGE SPECIFIC OPTICAL DENSITY AT 4.0 MINUTES			62
	Specimen 1	Specimen 2	Specimen 3
Maximum Density (Dm)	321.0	306.0	340.0
Time to Dm (minutes)	10.5	11.0	10.0
Clear Beam (Dc)	14.0	12.0	13.0
Corr. Max Density (Dmc)	307.0	294.0	327.0
Density at 1.5 minutes	16.0	20.0	23.0
Density at 4.0 minutes	61.0	65.0	59.0
Time to 90% Dm (minutes)	9.0	9.5	9.0
Specimen Weight (grams)	12.5	12,9	12.9

APPROVED BY:

NVLAP

This facility is accredited by the National Voluntery Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any agency of the United States Covernment for the productiested. This report is provided for the exclusive use of the client to whom it is addressed. It may be used in its entirety to gain product acceptance from duly constituted authorities. This report applies only to those samples testedand is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc. shall not be used under any circumstance in advertising to the general public.

714 Glenwood Place

Dalton, GA 30721

Gary asbury

706-226-3283

Fax: 706-226-6787

protest@optilink.us